Lower Extremity Infrainguinal Endovascular Interventions for Peripheral Arterial Disease
Abstract
Purpose: Severe peripheral artery disease (PAD) may result in lower extremity amputation or require multiple procedures to achieve limb salvage. Current prediction models for major amputation risk have had limited performance at the individual level. We developed an interpretable machine learning model that will allow clinicians to identify patients at risk of amputation and optimize treatment decisions for PAD patients.
Methods: We utilized the American College of Surgeons National Surgical Quality Improvement Program database to collect preoperative clinical and laboratory information on 14,444 patients who underwent lower extremity endovascular procedures for PAD from 2011 to 2018. Using data from 2011 to 2017 for training and data from 2018 for testing, we developed a machine learning model to predict 30 day amputation in this patient population. We present performance metrics overall and stratified by race, sex, and age. We also demonstrate model interpretability using Gini importance and SHapley Additive exPlanations.
Results: A random forest machine learning model achieved an area under the receiver-operator curve (AU-ROC) of 0.81. The most important features of the model were elective surgery designation, claudication, open wound/wound infection, white blood cell count, and albumin. The model performed equally well on white and non-white patients (Delong p-value = 0.189), males and females (Delong p-value = 0.572), and patients under age 65 and patients age 65 and older (Delong p-value = 0.704).
Conclusion: We present a machine learning model that predicts 30 day major amputation events in PAD patients undergoing lower extremity endovascular procedures. This model can optimize clinical decision-making for patients with PAD.
Keywords: Endovascular intervention; Machine learning; Peripheral artery disease; Risk assessment.
If you find WoundCareWeekly.com of value please consider a monthly donation to help cover expenses and keep this website going.