Chronic wounds caused by underlying physiological causes such as diabetic wounds, pressure ulcers, venous leg ulcers and infected wounds affect a significant portion of the population. In order to treat chronic wounds, a strong debridement, removal of necrotic tissue, elimination of infection and stimulation of granulation tissue are required. Maggot debridement therapy (MDT), which is an alternative treatment method based on history, has been used quite widely. MDT is an efficient, simple, cost-effective and reliable biosurgery method using mostly larvae of Lucilia sericata fly species. Larvae can both physically remove necrotic tissue from the wound site and stimulate wound healing by activating molecular processes in the wound area through the enzymes they secrete. The larvae can stimulate wound healing by activating molecular processes in the wound area through enzymes in their excretions/secretions (ES). Studies have shown that ES has antibacterial, antifungal, anti-inflammatory, angiogenic, proliferative, hemostatic and tissue-regenerating effects both in vivo and in vitro. It is suggested that these effects stimulate wound healing and accelerate wound healing … read more
Tag: diabetic wounds
The Whole Patient Approach
Addressing Common Comorbidities That Affect Wound Healing
When developing the plan of care for the patient with a chronic wound, it is imperative first to look at the “whole” patient and not just the “hole” in the patient.1 As we do, we are able to review any medical conditions or disease states that may affect wound repair and healing. Millions of Americans are affected by chronic wounds each year. These wounds include causes such as diabetic foot ulcers, venous leg ulcers, arterial insufficiency, and pressure ulcers. Common comorbid conditions that can affect healing include diabetes, venous insufficiency, peripheral arterial disease, cardiopulmonary and oxygen transport conditions, immune deficiencies, and dementia.2 This discussion is focused on these conditions and factors that contribute to chronic wounds and their management … read more
New hope for treating diabetic wounds that just won’t heal
Mice bred without TSP2 protein heal faster, suggesting a new target for better treatments
One of the most frustrating and debilitating complications of diabetes is the development of wounds on the foot or lower leg. Once they form, they can persist for months, leading to painful and dangerous infections.
New research uncovers the role of a particular protein in maintaining these wounds and suggests that reversing its effects could help aid wound healing in patients with diabetes.
“We discovered that a specific protein, thrombospondin-2 (TSP2), is elevated in wounds of patients with diabetes as well as in animal models of diabetes,” said Britta Kunkemoeller, a doctoral student at Yale University who conducted the study. “To determine whether TSP2 contributes to delayed wound healing, we genetically removed TSP2 from a mouse model of diabetes and observed improved wound healing. Our study shows that TSP2 could be a target for a specific therapy for diabetic wounds.” … read more